Air conduction and difussion through textile duct

Benelux Premium

Technical Specification Sheet

Textile material 100% polyester

Permeability

Weight	6.19 oz/yd2	
Tear strength	Warp	Weft
NMX-A-109-INNTEX-2005	12.92 Lbf	6.54 Lbf
Tensile strength	Warp	Weft
NMX-A-059/2-INNTEX-2008	314.73 Lbf	179.84 Lbf

1 Cilificationity		
	ASTM-D737-04, Value 0.82 CFM/SQFT	
Vertical Flammability	Warp	Weft
ASTM-D-6413-08		
Char length	5.64 in	4.49 in
After flame	3 s	0 s
Flash fire exposure	0,0 s	0,0 s
	Maximum	Minimum
Temperature	140° F	14° F

Benelux Premium is a high-quality permeable material that provides outstanding hygiene results for ventilation systems in industries with environments that require high hygienic standards.

Benelux Premium helps reduce condensation. Its polyester fibers are ideal for durable solutions and it is 100% washable. This is the cleanest system that meets the highest hygienic standards due to its antibacterial properties.

Ideal for:

- Food industry
- · Pharmaceutical industry
- Laboratories
- · Pools

- · Malls
- · Churches
- · Retail
- Showrooms

Adittional application

Antistatic
Flame retardant material
ASTM-D-6413-08
Recommended use
Internal
• Air conduction and difussion

